Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38556049

RESUMO

BACKGROUND & AIMS: Mounting evidence suggests a role for the gastrointestinal microbiome as a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system. METHODS: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypic bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways. RESULTS: Curli induced a proinflammatory response, with marked up-regulation of serum amyloid A3 (Saa3) and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant SAA3 was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, indicating a feedforward loop. Colonization of curli-producing Salmonella and dextran sulfate sodium-induced colitis caused a significant increase in Saa3 transcripts, indicating a central role for SAA3 in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia. CONCLUSIONS: Our results position SAA3 as an important mediator of gastrointestinal vulnerability toward bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.

2.
Cell Tissue Res ; 393(2): 393-399, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314493

RESUMO

In the past years, it has become clear that the family of Mas-related G protein-coupled receptors plays a central role in neuro-immune communication at mucosal barrier surfaces, in particular in the skin. Remarkably, MRGPR expression at other mucosal surfaces remains poorly characterized. To fill this gap in our understanding, the present study was undertaken to screen and verify the expression of the human MRGPR family members in the mucosal biopsies of the human gastrointestinal (GI) tract. Our findings revealed that, of all human MRGPRs family members, only MRGPRF mRNA is expressed at detectable levels in human mucosal biopsies of both terminal ileum and sigmoid colon. Furthermore, immunohistochemical stainings revealed that MRGPRF is specifically expressed by mucosal entero-endocrine cells (EECs). Overall, this study showed for the first time that the human ileum and colonic mucosa represent a novel expression site for the orphan MRGPRF, more specifically in EECs.


Assuntos
Células Endócrinas , Mucosa Intestinal , Humanos , Mucosa Intestinal/metabolismo , Trato Gastrointestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Colo/metabolismo , Células Endócrinas/metabolismo , Células Enteroendócrinas/metabolismo
3.
Anat Rec (Hoboken) ; 306(5): 1131-1139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35694864

RESUMO

Over the past decade, the research field dealing with the role of a new family of Rhodopsin A-like G protein-coupled receptors, that is, the family of Mas-related G protein-coupled receptors (Mrgprs) has expanded enormously. A plethora of recent studies have provided evidence that Mrgprs are key players in itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses in the skin. Over the years, it has become clear that this role is not limited to the skin, but extends to other mucosal surfaces such as the respiratory tract and the gastrointestinal (GI) tract. In the GI tract, Mrgprs have emerged as novel interoceptive sensory pathways linked to health and disease, and are in close functional association with the gut's immune system. This review aims to provide an update of our current knowledge on the expression, distribution and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the GI system.


Assuntos
Neuroimunomodulação , Receptores Acoplados a Proteínas G , Humanos , Dor , Prurido , Trato Gastrointestinal
4.
Adv Exp Med Biol ; 1383: 259-269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587165

RESUMO

Over the past 15 years, the research field on Mas-related G protein-coupled receptors (Mrgprs), a relatively new family of rhodopsin A-like G protein-coupled receptors, has expanded enormously, and a plethora of recent studies have provided evidence that several of these Mrgpr family members play an important role in the underlying mechanisms of itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses. Initial studies mainly focused on the skin, but more recently also visceral organs such as the respiratory and gastrointestinal (GI) tracts emerged as sites for Mrgpr involvement. It has become clear that the gastrointestinal tract and its innervation in close association with the immune system represent a novel expression site for Mrgprs where they contribute to the interoceptive mechanisms maintaining homeostasis and might constitute promising targets in chronic abdominal pain disorders. In this short review, we provide an update of our current knowledge on the expression, distribution, and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the gastrointestinal tract, their mediatory role(s) in gut neuro-immune signaling, and their involvement in visceral afferent (nociceptive) pathways.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Prurido , Dor , Pele/metabolismo
5.
Front Immunol ; 13: 1026304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726977

RESUMO

Background: Occupancy of MRGPRX2 heralds a new era in our understandings of immediate drug hypersensitivity reactions (IDHRs), but a constitutive expression of this receptor by basophils is debated. Objective: To explore the expression and functionality of MRGPRX2 in and on basophils. Methods: Basophils from patients with birch pollen allergy, IDHRs to moxifloxacin, and healthy controls were studied in different conditions, that is, in rest, after stimulation with anti-IgE, recombinant major birch pollen allergen (rBet v 1), moxifloxacin, fMLP, substance P (SP), or other potential basophil secretagogues. In a separate set of experiments, basophils were studied after purification and resuspension in different media. Results: Resting whole blood basophils barely express MRGPRX2 on their surface and are unresponsive to SP or moxifloxacin. However, surface MRGPRX2 is quickly upregulated upon incubation with anti-IgE or fMLP. Pre-stimulation with anti-IgE can induce a synergic effect on basophil degranulation in IgE-responsive subjects after incubation with SP or moxifloxacin, provided that basophils have been obtained from patients who experienced an IDHR to moxifloxacin. Cell purification can trigger a "spontaneous" and functional upregulation of MRGPRX2 on basophils, not seen in whole blood cells, and its surface density can be influenced by distinct culture media. Conclusion: Basophils barely express MRGPRX2 in resting conditions. However, the receptor can be quickly upregulated after stimulation with anti-IgE, fMLP, or after purification, making cells responsive to MRGPRX2 occupation. We anticipate that such "conditioned" basophils constitute a model to explore MRGPRX2 agonism or antagonism, including IDHRs originating from the occupation of this receptor.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade Imediata , Humanos , Basófilos , Imunoglobulina E , Moxifloxacina , Alérgenos/metabolismo , Hipersensibilidade Imediata/metabolismo , Hipersensibilidade a Drogas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
6.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948051

RESUMO

G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist ß-alanine, we observed a release of IL-6. ß-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for ß-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.


Assuntos
Interleucina-6/metabolismo , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Alanina/farmacologia , Animais , Estrenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Peptídeos Cíclicos/farmacologia , Pirrolidinonas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos
7.
Cell Tissue Res ; 378(3): 555-558, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473818

RESUMO

Due to their pivotal role in nociception and mast cell biology, the family of Mas-related G protein-coupled receptors (Mrgprs) has recently gained attention for their possible expression and role(s) in the gastrointestinal tract. In this context, based on immunocytochemical stainings using a commercial antibody, a recent study by Zhou et al. reported that the murine Mrgprd member is expressed in mouse gut lamina propria immune cells and in the outer smooth muscle layers pointing to a potential role for MrgprD in inflammatory responses and intestinal immunity. Immunohistochemical staining for G protein-coupled receptors (GPCRs), however, remains challenging and should be cautiously interpreted using appropriate specificity controls. Using the same antibody with an identical dilution, we did observe a similar staining in the same wild-type mouse strain, but an identical staining pattern was also found in mice lacking the MrgprD receptor, indicating that this antibody recognizes epitopes other than those of MrgprD. Moreover, in situ hybridization for MrgprD further indicated the absence of receptor mRNA expression in lamina propria immune cells and in the outer smooth muscle layers. Therefore, the results and conclusions regarding the presence of MrgprD at protein level within the GI wall as described in the study of Zhou and collaborators should be interpreted with strong caution and should be reconsidered in the light of the emerging possible roles of MrgprD and therapeutic perspectives in gastrointestinal pathophysiology.


Assuntos
Íleo/metabolismo , Mucosa/metabolismo , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
8.
Neurogastroenterol Motil ; 31(8): e13623, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119828

RESUMO

BACKGROUND: Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS: Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS: In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.


Assuntos
Colo/inervação , Hiperalgesia/metabolismo , Neurônios Aferentes/metabolismo , Nociceptividade/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Gânglios Espinais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
9.
Br J Pharmacol ; 175(17): 3516-3533, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29911328

RESUMO

BACKGROUND AND PURPOSE: Serine proteases have been re suggested as important mediators of visceral pain. We investigated their effect by using newly developed serine protease inhibitors with a well-characterized inhibitory profile in a rat model of post-inflammatory irritable bowel syndrome (IBS). EXPERIMENTAL APPROACH: Colitis was induced in rats receiving intrarectal trinitrobenzenesulphonic acid; controls received 0.9% NaCl. Colonoscopies were performed on day 3, to confirm colitis, and later until mucosal healing. Visceral hypersensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after i.p. injection of the serine protease inhibitors nafamostat, UAMC-00050 or UAMC-01162. Serine proteases, protease-activated receptors (PARs) and TRP channels were quantified by qPCR and immunohistochemistry. Proteolytic activity was characterized using fluorogenic substrates. KEY RESULTS: VMR was significantly elevated in post-colitis rats. Nafamostat normalized VMRs at the lowest dose tested. UAMC-00050 and UAMC-01162 significantly decreased VMR dose-dependently. Expression of mRNA for tryptase-αß-1and PAR4, and tryptase immunoreactivity was significantly increased in the colon of post-colitis animals. Trypsin-like activity was also significantly increased in the colon but not in the faeces. PAR2 and TRPA1 immunoreactivity co-localized with CGRP-positive nerve fibres in control and post-colitis animals. CONCLUSIONS AND IMPLICATIONS: Increased expression of serine proteases and activity together with increased expression of downstream molecules at the colonic and DRG level and in CGRP-positive sensory nerve fibres imply a role for serine proteases in post-inflammatory visceral hypersensitivity. Our results support further investigation of serine protease inhibitors as an interesting treatment strategy for IBS-related visceral pain.


Assuntos
Síndrome do Intestino Irritável/tratamento farmacológico , Inibidores de Serino Proteinase/uso terapêutico , Dor Visceral/fisiopatologia , Animais , Modelos Animais de Doenças , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
Anat Rec (Hoboken) ; 301(6): 1103-1114, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29346716

RESUMO

Neuropeptides AF (NPAF), FF (NPFF) and SF (NPSF) are RFamide neuropeptides known to be widely expressed in the mammalian central nervous system, where they fulfill a wide range of functions with pain modulation being the most prominent one. Recent evidence indicates that RFamides act as mediators in mast cell-sensory nerve communications related to allergic disease. Previous work by our group has shown that the expression levels of some members of the Mas-related gene receptor (Mrgpr) family in both enteric neurons and mucosal mast cells change during intestinal inflammation. The Mrgpr subtypes C11 and A4 can be activated by NPAF, while A1 and C11 are triggered by NPFF. The aim of the present study was to investigate whether RFamides of the NPFF group are expressed in the gastrointestinal tract and to identify possible targets and receptors that might be involved in RFamide-associated mast cell modulation. To this end, the expression and distribution patterns of NPFF/AF receptors and the NPFF precursor protein were determined in bone marrow-derived mucosal mast cells (BMMCs) by immunocytochemistry and (RT-) PCR. BMMCs were found to express MrgprA4 and A1, and functional analysis of the effects of NPAF by means of a ß-hexosaminidase assay, mMCP-1 ELISA, electron microscopy and live cell calcium imaging revealed a piecemeal degranulation induced by NPAF. However, knock-out of MrgprA4 and A1 did not reduce the effect of NPAF, indicating that the BMMC response to NPAF was receptor independent. ProNPFF was expressed in neurons and BMMCs, suggesting that both cell types are potential sources of NPAF in situ. Our results show that the RFamide NPAF can be considered as a novel modulator of BMMC activity in the neuro-immune communication in the gastrointestinal tract, although the exact signaling pathway remains to be elucidated. Anat Rec, 00:000-000, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 301:1103-1114, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Mastócitos/efeitos dos fármacos , Mucosa/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Mucosa/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Neuropeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...